Decagonal number


A decagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon (a ten-sided polygon). However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, the nth decagonal numbers counts the number of dots in a pattern of n nested decagons, all sharing a common corner, where the ith decagon in the pattern has sides made of i dots spaced one unit apart from each other. The n-th decagonal number is given by the formula


Dn=4n2−3n.displaystyle D_n=4n^2-3n.D_n = 4n^2 - 3n.

The first few decagonal numbers are:



0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326 (sequence A001107 in the OEIS)

The n-th decagonal number can also be calculated by adding the square of n to thrice the (n—1)-th pronic number or, to put it algebraically, as


Dn=n2+3(n2−n).displaystyle D_n=n^2+3(n^2-n).D_n = n^2 + 3(n^2 - n).


Properties


  • Decagonal numbers consistently alternate parity.




The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP

Comments

Popular posts from this blog

Executable numpy error

Trying to Print Gridster Items to PDF without overlapping contents

Mass disable jenkins jobs