Divisor function







Divisor function σ0(n) up to n = 250




Sigma function σ1(n) up to n = 250




Sum of the squares of divisors, σ2(n), up to n = 250




Sum of cubes of divisors, σ3(n) up to n = 250


In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.


A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.




Contents





  • 1 Definition


  • 2 Example


  • 3 Table of values


  • 4 Properties

    • 4.1 Formulas at prime powers


    • 4.2 Other properties and identities



  • 5 Series relations


  • 6 Growth rate


  • 7 See also


  • 8 Notes


  • 9 References




Definition


The sum of positive divisors function σx(n), for a real or complex number x, is defined as the sum of the xth powers of the positive divisors of n. It can be expressed in sigma notation as


σx(n)=∑d∣ndx,displaystyle sigma _x(n)=sum _dmid nd^x,!,displaystyle sigma _x(n)=sum _dmid nd^x,!,

where d∣ndisplaystyle dmid ndisplaystyle dmid n is shorthand for "d divides n".
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ0(n), or the number-of-divisors function[1][2] (OEIS A000005). When x is 1, the function is called the sigma function or sum-of-divisors function,[1][3] and the subscript is often omitted, so σ(n) is the same as σ1(n) (OEIS A000203).


The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS A001065), and equals σ1(n) − n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.



Example


For example, σ0(12) is the number of the divisors of 12:


σ0(12)=10+20+30+40+60+120=1+1+1+1+1+1=6,displaystyle beginalignedsigma _0(12)&=1^0+2^0+3^0+4^0+6^0+12^0\&=1+1+1+1+1+1=6,endaligned<br/>beginalign<br/>sigma_0(12) & = & = "1 + 1 + 1 + 1 + 1 + 1 = 6,"
endalign
"/>

while σ1(12) is the sum of all the divisors:


σ1(12)=11+21+31+41+61+121=1+2+3+4+6+12=28,displaystyle beginalignedsigma _1(12)&=1^1+2^1+3^1+4^1+6^1+12^1\&=1+2+3+4+6+12=28,endaligned<br/>beginalign<br/>sigma_1(12) & = & = "1 + 2 + 3 + 4 + 6 + 12 = 28,"
endalign
"/>

and the aliquot sum s(12) of proper divisors is:


s(12)=11+21+31+41+61=1+2+3+4+6=16.displaystyle beginaligneds(12)&=1^1+2^1+3^1+4^1+6^1\&=1+2+3+4+6=16.endaligned<br/>beginalign<br/>s(12) & = & = "1 + 2 + 3 + 4 + 6 = 16."
endalign
"/>


Table of values









































































































n
Divisors
σ0(n)
σ1(n)

s(n) = σ1(n) − n
Comment
1
1
1
1
0

square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect)
2
1, 2
2
3
1

Prime: σ1(n) = 1 + n so s(n) = 1; power of 2: s(n) = n − 1 (almost-perfect)
3
1, 3
2
4
1
Prime: σ1(n) = 1 + n so s(n) = 1
4
1, 2, 4
3
7
3
square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect)
5
1, 5
2
6
1
Prime: σ1(n) = 1 + n so s(n) = 1
6
1, 2, 3, 6
4
12
6
first perfect number: s(n) = n
7
1, 7
2
8
1
Prime: σ1(n) = 1 + n so s(n) = 1
8
1, 2, 4, 8
4
15
7
power of 2: s(n) = n − 1 (almost-perfect)
9
1, 3, 9
3
13
4
square number: σ0(n) is odd
10
1, 2, 5, 10
4
18
8

11
1, 11
2
12
1
Prime: σ1(n) = 1 + n so s(n) = 1
12
1, 2, 3, 4, 6, 12
6
28
16
first abundant number: s(n) > n
13
1, 13
2
14
1
Prime: σ1(n) = 1 + n so s(n) = 1
14
1, 2, 7, 14
4
24
10

15
1, 3, 5, 15
4
24
9

16
1, 2, 4, 8, 16
5
31
15
square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect)









































































































































































σ0(n)
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
0+

1
2
2
3
2
4
2
4
3
4
2
12+
6
2
4
4
5
2
6
2
6
4
4
2
24+
8
3
4
4
6
2
8
2
6
4
4
4
36+
9
2
4
4
8
2
8
2
6
6
4
2
48+
10
3
6
4
6
2
8
4
8
4
4
2
60+
12
2
4
6
7
4
8
2
6
4
8
2
72+
12
2
4
6
6
4
8
2
10
5
4
2
84+
12
4
4
4
8
2
12
4
6
4
4
4
96+
12
2
6
6
9
2
8
2
8
8
4
2
108+
12
2
8
4
10
2
8
4
6
6
4
4
120+
16
3
4
4
6
4
12
2
8
4
8
2
132+
12
4
4
8
8
2
8
2
12
4
4
4









































































































































































σ1(n)
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
0+

1
3
4
7
6
12
8
15
13
18
12
12+
28
14
24
24
31
18
39
20
42
32
36
24
24+
60
31
42
40
56
30
72
32
63
48
54
48
36+
91
38
60
56
90
42
96
44
84
78
72
48
48+
124
57
93
72
98
54
120
72
120
80
90
60
60+
168
62
96
104
127
84
144
68
126
96
144
72
72+
195
74
114
124
140
96
168
80
186
121
126
84
84+
224
108
132
120
180
90
234
112
168
128
144
120
96+
252
98
171
156
217
102
216
104
210
192
162
108
108+
280
110
216
152
248
114
240
144
210
182
180
144
120+
360
133
186
168
224
156
312
128
255
176
252
132
132+
336
160
204
240
270
138
288
140
336
192
216
168









































































































































































σ2(n)
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
0+

1
5
10
21
26
50
50
85
91
130
122
12+
210
170
250
260
341
290
455
362
546
500
610
530
24+
850
651
850
820
1050
842
1300
962
1365
1220
1450
1300
36+
1911
1370
1810
1700
2210
1682
2500
1850
2562
2366
2650
2210
48+
3410
2451
3255
2900
3570
2810
4100
3172
4250
3620
4210
3482
60+
5460
3722
4810
4550
5461
4420
6100
4490
6090
5300
6500
5042
72+
7735
5330
6850
6510
7602
6100
8500
6242
8866
7381
8410
6890
84+
10500
7540
9250
8420
10370
7922
11830
8500
11130
9620
11050
9412
96+
13650
9410
12255
11102
13671
10202
14500
10610
14450
13000
14050
11450
108+
17220
11882
15860
13700
17050
12770
18100
13780
17682
15470
17410
14500
120+
22100
14763
18610
16820
20202
16276
22750
16130
21845
18500
22100
17162
132+
25620
18100
22450
21320
24650
18770
26500
19322
27300
22100
25210
20740

The cases x = 2 to 5 are listed in OEIS A001157OEIS A001160, x = 6 to 24 are listed in OEIS A013954OEIS A013972.



Properties



Formulas at prime powers


For a prime number p,


σ0(p)=2σ0(pn)=n+1σ1(p)=p+1displaystyle beginalignedsigma _0(p)&=2\sigma _0(p^n)&=n+1\sigma _1(p)&=p+1endaligneddisplaystyle beginalignedsigma _0(p)&=2\sigma _0(p^n)&=n+1\sigma _1(p)&=p+1endaligned

because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,


σ0(pn#)=2ndisplaystyle sigma _0(p_n#)=2^n, sigma_0(p_n#) = 2^n ,

since n prime factors allow a sequence of binary selection (pidisplaystyle p_ip_i or 1) from n terms for each proper divisor formed.


Clearly, 1<σ0(n)<ndisplaystyle 1<sigma _0(n)<n1 < sigma_0(n) < n and σ(n) > n for all n > 2.


The divisor function is multiplicative, but not completely multiplicative. The consequence of this is that, if we write


n=∏i=1rpiaidisplaystyle n=prod _i=1^rp_i^a_in = prod_i=1^r p_i^a_i

where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have


σx(n)=∏i=1r∑j=0aipijx=∏i=1r(1+pix+pi2x+⋯+piaix).displaystyle sigma _x(n)=prod _i=1^rsum _j=0^a_ip_i^jx=prod _i=1^r(1+p_i^x+p_i^2x+cdots +p_i^a_ix).<br/>sigma_x(n) = "/>

which is equivalent to the useful formula:


σx(n)=∏i=1rpi(ai+1)x−1pix−1displaystyle sigma _x(n)=prod _i=1^rfrac p_i^(a_i+1)x-1p_i^x-1sigma_x(n) = prod_i=1^r fracp_i^(a_i+1)x-1p_i^x-1

It follows (by setting x = 0) that d(n) is:


σ0(n)=∏i=1r(ai+1).displaystyle sigma _0(n)=prod _i=1^r(a_i+1).sigma_0(n)=prod_i=1^r (a_i+1).

For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate σ0(24)displaystyle sigma _0(24)sigma_0(24) as so:


σ0(24)=∏i=12(ai+1)=(3+1)(1+1)=4⋅2=8.displaystyle beginalignedsigma _0(24)&=prod _i=1^2(a_i+1)\&=(3+1)(1+1)=4cdot 2=8.endaligneddisplaystyle beginalignedsigma _0(24)&=prod _i=1^2(a_i+1)\&=(3+1)(1+1)=4cdot 2=8.endaligned

The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.



Other properties and identities


Euler proved the remarkable recurrence:
[4][5]


σ(n)=σ(n−1)+σ(n−2)−σ(n−5)−σ(n−7)+σ(n−12)+σ(n−15)+⋯=∑i∈Z(−1)i+1(σ(n−12(3i2−i))+δ(n,12(3i2−i))n)displaystyle beginarrayrclsigma (n)&=&sigma (n-1)+sigma (n-2)-sigma (n-5)-sigma (n-7)+sigma (n-12)+sigma (n-15)+cdots \&=&sum _iin mathbb Z (-1)^i+1left(sigma (n-frac 12(3i^2-i))+delta (n,frac 12(3i^2-i)),nright)endarraydisplaystyle beginarrayrclsigma (n)&=&sigma (n-1)+sigma (n-2)-sigma (n-5)-sigma (n-7)+sigma (n-12)+sigma (n-15)+cdots \&=&sum _iin mathbb Z (-1)^i+1left(sigma (n-frac 12(3i^2-i))+delta (n,frac 12(3i^2-i)),nright)endarray

where we set σ(i)=0displaystyle sigma (i)=0displaystyle sigma (i)=0 for i≤0displaystyle ileq 0displaystyle ileq 0,
we use the Kronecker delta δ(⋅,⋅)displaystyle delta (cdot ,cdot )displaystyle delta (cdot ,cdot ), and 12(3i2−i)displaystyle tfrac 12(3i^2-i)displaystyle tfrac 12(3i^2-i) are the pentagonal numbers. Indeed, Euler proved this by logarithmic differentiation of the identity in his Pentagonal number theorem.


For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and σ0(n)displaystyle sigma _0(n)sigma_0(n) is even; for a square integer, one divisor (namely ndisplaystyle sqrt nsqrt n) is not paired with a distinct divisor and σ0(n)displaystyle sigma _0(n)sigma_0(n) is odd. Similarly, the number σ1(n)displaystyle sigma _1(n)displaystyle sigma _1(n) is odd if and only if n is a square or twice a square.[citation needed]


We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself.
This function is the one used to recognize perfect numbers which are the n for which s(n) = n. If s(n) > n then n is an abundant number and if s(n) < n then n is a deficient number.


If n is a power of 2, for example, n=2kdisplaystyle n=2^kn = 2^k, then σ(n)=2⋅2k−1=2n−1,displaystyle sigma (n)=2cdot 2^k-1=2n-1,displaystyle sigma (n)=2cdot 2^k-1=2n-1, and s(n) = n - 1, which makes n almost-perfect.


As an example, for two distinct primes p and q with p < q, let


n=pq.displaystyle n=pq.,n = pq. ,

Then


σ(n)=(p+1)(q+1)=n+1+(p+q),displaystyle sigma (n)=(p+1)(q+1)=n+1+(p+q),,sigma(n) = (p+1)(q+1) = n + 1 + (p+q), ,

φ(n)=(p−1)(q−1)=n+1−(p+q),displaystyle varphi (n)=(p-1)(q-1)=n+1-(p+q),,varphi(n) = (p-1)(q-1) = n + 1 - (p+q), ,

and


n+1=(σ(n)+φ(n))/2,displaystyle n+1=(sigma (n)+varphi (n))/2,,n + 1 = (sigma(n) + varphi(n))/2, ,

p+q=(σ(n)−φ(n))/2,displaystyle p+q=(sigma (n)-varphi (n))/2,,p + q = (sigma(n) - varphi(n))/2, ,

where φ(n)displaystyle varphi (n)varphi (n) is Euler's totient function.


Then, the roots of:


(x−p)(x−q)=x2−(p+q)x+n=x2−[(σ(n)−φ(n))/2]x+[(σ(n)+φ(n))/2−1]=0displaystyle (x-p)(x-q)=x^2-(p+q)x+n=x^2-[(sigma (n)-varphi (n))/2]x+[(sigma (n)+varphi (n))/2-1]=0,(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(sigma(n) - varphi(n))/2]x + [(sigma(n) + varphi(n))/2 - 1] = 0 ,

allow us to express p and q in terms of σ(n) and φ(n) only, without even knowing n or p+q, as:


p=(σ(n)−φ(n))/4−[(σ(n)−φ(n))/4]2−[(σ(n)+φ(n))/2−1],displaystyle p=(sigma (n)-varphi (n))/4-sqrt [(sigma (n)-varphi (n))/4]^2-[(sigma (n)+varphi (n))/2-1],,p = (sigma(n) - varphi(n))/4 - sqrt[(sigma(n) - varphi(n))/4]^2 - [(sigma(n) + varphi(n))/2 - 1], ,

q=(σ(n)−φ(n))/4+[(σ(n)−φ(n))/4]2−[(σ(n)+φ(n))/2−1].displaystyle q=(sigma (n)-varphi (n))/4+sqrt [(sigma (n)-varphi (n))/4]^2-[(sigma (n)+varphi (n))/2-1].,q = (sigma(n) - varphi(n))/4 + sqrt[(sigma(n) - varphi(n))/4]^2 - [(sigma(n) + varphi(n))/2 - 1]. ,

Also, knowing n and either σ(n)displaystyle sigma (n)sigma (n) or φ(n)displaystyle varphi (n)varphi (n) (or knowing p+q and either σ(n)displaystyle sigma (n)sigma (n) or φ(n)displaystyle varphi (n)varphi (n)) allows us to easily find p and q.


In 1984, Roger Heath-Brown proved that the equality


σ0(n)=σ0(n+1)displaystyle sigma _0(n)=sigma _0(n+1)sigma_0(n) = sigma_0(n + 1)

is true for an infinity of values of n, see OEIS A005237.



Series relations


Two Dirichlet series involving the divisor function are:


∑n=1∞σa(n)ns=ζ(s)ζ(s−a)fors>1,s>a+1,displaystyle sum _n=1^infty frac sigma _a(n)n^s=zeta (s)zeta (s-a)quad textforquad s>1,s>a+1,sum_n=1^infty fracsigma_a(n)n^s = zeta(s) zeta(s-a)quadtextforquad s>1,s>a+1,

which for d(n) = σ0(n) gives


∑n=1∞d(n)ns=ζ2(s)fors>1,displaystyle sum _n=1^infty frac d(n)n^s=zeta ^2(s)quad textforquad s>1,sum_n=1^infty fracd(n)n^s = zeta^2(s)quadtextforquad s>1,

and


∑n=1∞σa(n)σb(n)ns=ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)ζ(2s−a−b).displaystyle sum _n=1^infty frac sigma _a(n)sigma _b(n)n^s=frac zeta (s)zeta (s-a)zeta (s-b)zeta (s-a-b)zeta (2s-a-b).sum_n=1^infty fracsigma_a(n)sigma_b(n)n^s = fraczeta(s) zeta(s-a) zeta(s-b) zeta(s-a-b)zeta(2s-a-b).

A Lambert series involving the divisor function is:


∑n=1∞qnσa(n)=∑n=1∞∑j=1∞naqjn=∑n=1∞naqn1−qndisplaystyle sum _n=1^infty q^nsigma _a(n)=sum _n=1^infty sum _j=1^infty n^aq^j,n=sum _n=1^infty frac n^aq^n1-q^ndisplaystyle sum _n=1^infty q^nsigma _a(n)=sum _n=1^infty sum _j=1^infty n^aq^j,n=sum _n=1^infty frac n^aq^n1-q^n

for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.



Growth rate


In little-o notation, the divisor function satisfies the inequality (see page 296 of Apostol’s book[6])


for all ϵ>0,d(n)=o(nϵ).displaystyle mboxfor all epsilon >0,quad d(n)=o(n^epsilon ).mboxfor all epsilon>0,quad d(n)=o(n^epsilon).

More precisely, Severin Wigert showed that


lim supn→∞log⁡d(n)log⁡n/log⁡log⁡n=log⁡2.displaystyle limsup _nto infty frac log d(n)log n/log log n=log 2.limsup_ntoinftyfraclog d(n)log n/loglog n=log2.

On the other hand, since there are infinitely many prime numbers,


lim infn→∞d(n)=2.displaystyle liminf _nto infty d(n)=2.liminf_ntoinfty d(n)=2.

In Big-O notation, Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality (see Theorem 3.3 of Apostol’s book[6])


for all x≥1,∑n≤xd(n)=xlog⁡x+(2γ−1)x+O(x),displaystyle mboxfor all xgeq 1,sum _nleq xd(n)=xlog x+(2gamma -1)x+O(sqrt x),mboxfor all xgeq1, sum_nleq xd(n)=xlog x+(2gamma-1)x+O(sqrtx),

where γdisplaystyle gamma gamma is Euler's gamma constant. Improving the bound O(x)displaystyle O(sqrt x)O(sqrtx) in this formula is known as Dirichlet's divisor problem.



The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by:


lim supn→∞σ(n)nlog⁡log⁡n=eγ,displaystyle limsup _nrightarrow infty frac sigma (n)n,log log n=e^gamma ,<br/>limsup_nrightarrowinftyfracsigma(n)n,log log n="/>

where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 (Grönwall 1913). His proof uses Mertens' 3rd theorem, which says that


limn→∞1log⁡n∏p≤npp−1=eγ,displaystyle lim _nto infty frac 1log nprod _pleq nfrac pp-1=e^gamma ,displaystyle lim _nto infty frac 1log nprod _pleq nfrac pp-1=e^gamma ,

where p denotes a prime.


In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the inequality:



 σ(n)<eγnlog⁡log⁡ndisplaystyle sigma (n)<e^gamma nlog log n sigma(n) < e^gamma n log log n (Robin's inequality)

holds for all sufficiently large n (Ramanujan 1997). The largest known value that violates the inequality is n=5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true (Robin 1984). This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant (Akbary & Friggstad 2009). It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime (Choie et al. 2007).


Robin also proved, unconditionally, that the inequality


 σ(n)<eγnlog⁡log⁡n+0.6483 nlog⁡log⁡ndisplaystyle sigma (n)<e^gamma nlog log n+frac 0.6483 nlog log n sigma(n) < e^gamma n log log n + frac0.6483 nlog log n

holds for all n ≥ 3.


A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that


σ(n)<Hn+ln⁡(Hn)eHndisplaystyle sigma (n)<H_n+ln(H_n)e^H_n sigma(n) < H_n + ln(H_n)e^H_n

for every natural number n > 1, where Hndisplaystyle H_nH_n is the nth harmonic number, (Lagarias 2002).



See also



  • Euler's totient function (Euler's phi function)

  • Table of divisors


  • Divisor sum convolutions Lists a few identities involving the divisor functions

  • Unitary divisor

  • Refactorable number


Notes




  1. ^ ab Long (1972, p. 46)


  2. ^ Pettofrezzo & Byrkit (1970, p. 63)


  3. ^ Pettofrezzo & Byrkit (1970, p. 58)


  4. ^ https://arxiv.org/abs/math/0411587, An observation on the sums of divisors


  5. ^ http://eulerarchive.maa.org//pages/E175.html, Decouverte d'une loi tout extraordinaire des nombres par rapport a la somme de leurs diviseurs


  6. ^ ab Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 




References



  • Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (PDF), American Mathematical Monthly, 116 (3): 273–275, doi:10.4169/193009709X470128, archived from the original (PDF) on 2014-04-11 .


  • Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. ISBN 0-262-02405-5, see page 234 in section 8.8.


  • Caveney, Geoffrey; Nicolas, Jean-Louis; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (PDF), INTEGERS: the Electronic Journal of Combinatorial Number Theory, 11: A33 


  • Choie, YoungJu; Lichiardopol, Nicolas; Moree, Pieter; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis", Journal de théorie des nombres de Bordeaux, 19 (2): 357–372, arXiv:math.NT/0604314 Freely accessible, doi:10.5802/jtnb.591, ISSN 1246-7405, MR 2394891, Zbl 1163.11059 


  • Grönwall, Thomas Hakon (1913), "Some asymptotic expressions in the theory of numbers", Transactions of the American Mathematical Society, 14: 113–122, doi:10.1090/S0002-9947-1913-1500940-6 


  • Ivić, Aleksandar (1985), The Riemann zeta-function. The theory of the Riemann zeta-function with applications, A Wiley-Interscience Publication, New York etc.: John Wiley & Sons, pp. 385–440, ISBN 0-471-80634-X, Zbl 0556.10026 


  • Lagarias, Jeffrey C. (2002), "An elementary problem equivalent to the Riemann hypothesis", The American Mathematical Monthly, 109 (6): 534–543, arXiv:math/0008177 Freely accessible, doi:10.2307/2695443, ISSN 0002-9890, JSTOR 2695443, MR 1908008 


  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950 


  • Ramanujan, Srinivasa (1997), "Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin", The Ramanujan Journal, 1 (2): 119–153, doi:10.1023/A:1009764017495, ISSN 1382-4090, MR 1606180 


  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77081766 


  • Robin, Guy (1984), "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées, Neuvième Série, 63 (2): 187–213, ISSN 0021-7824, MR 0774171 


  • Williams, Kenneth S. (2011), Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge: Cambridge University Press, ISBN 978-0-521-17562-3, Zbl 1227.11002 

  • Weisstein, Eric W. "Divisor Function". MathWorld. 

  • Weisstein, Eric W. "Robin's Theorem". MathWorld. 


  • Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions PDF of a paper by Huard, Ou, Spearman, and Williams. Contains elementary (i.e. not relying on the theory of modular forms) proofs of divisor sum convolutions, formulas for the number of ways of representing a number as a sum of triangular numbers, and related results.






The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP

Comments

Popular posts from this blog

Executable numpy error

Trying to Print Gridster Items to PDF without overlapping contents

Mass disable jenkins jobs