Divisor function
![]() | This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (January 2016) (Learn how and when to remove this template message) |

Divisor function σ0(n) up to n = 250

Sigma function σ1(n) up to n = 250

Sum of the squares of divisors, σ2(n), up to n = 250

Sum of cubes of divisors, σ3(n) up to n = 250
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.
Contents
1 Definition
2 Example
3 Table of values
4 Properties
4.1 Formulas at prime powers
4.2 Other properties and identities
5 Series relations
6 Growth rate
7 See also
8 Notes
9 References
Definition
The sum of positive divisors function σx(n), for a real or complex number x, is defined as the sum of the xth powers of the positive divisors of n. It can be expressed in sigma notation as
- σx(n)=∑d∣ndx,displaystyle sigma _x(n)=sum _dmid nd^x,!,
where d∣ndisplaystyle dmid n is shorthand for "d divides n".
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ0(n), or the number-of-divisors function[1][2] ( A000005). When x is 1, the function is called the sigma function or sum-of-divisors function,[1][3] and the subscript is often omitted, so σ(n) is the same as σ1(n) (
A000203).
The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, A001065), and equals σ1(n) − n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.
Example
For example, σ0(12) is the number of the divisors of 12:
- σ0(12)=10+20+30+40+60+120=1+1+1+1+1+1=6,displaystyle beginalignedsigma _0(12)&=1^0+2^0+3^0+4^0+6^0+12^0\&=1+1+1+1+1+1=6,endaligned
& = "1 + 1 + 1 + 1 + 1 + 1 = 6,"
endalign
"/>
while σ1(12) is the sum of all the divisors:
- σ1(12)=11+21+31+41+61+121=1+2+3+4+6+12=28,displaystyle beginalignedsigma _1(12)&=1^1+2^1+3^1+4^1+6^1+12^1\&=1+2+3+4+6+12=28,endaligned
& = "1 + 2 + 3 + 4 + 6 + 12 = 28,"
endalign
"/>
and the aliquot sum s(12) of proper divisors is:
- s(12)=11+21+31+41+61=1+2+3+4+6=16.displaystyle beginaligneds(12)&=1^1+2^1+3^1+4^1+6^1\&=1+2+3+4+6=16.endaligned
& = "1 + 2 + 3 + 4 + 6 = 16."
endalign
"/>
Table of values
n | Divisors | σ0(n) | σ1(n) | s(n) = σ1(n) − n | Comment |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0 | square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect) |
2 | 1, 2 | 2 | 3 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1; power of 2: s(n) = n − 1 (almost-perfect) |
3 | 1, 3 | 2 | 4 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1 |
4 | 1, 2, 4 | 3 | 7 | 3 | square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect) |
5 | 1, 5 | 2 | 6 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1 |
6 | 1, 2, 3, 6 | 4 | 12 | 6 | first perfect number: s(n) = n |
7 | 1, 7 | 2 | 8 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1 |
8 | 1, 2, 4, 8 | 4 | 15 | 7 | power of 2: s(n) = n − 1 (almost-perfect) |
9 | 1, 3, 9 | 3 | 13 | 4 | square number: σ0(n) is odd |
10 | 1, 2, 5, 10 | 4 | 18 | 8 | |
11 | 1, 11 | 2 | 12 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1 |
12 | 1, 2, 3, 4, 6, 12 | 6 | 28 | 16 | first abundant number: s(n) > n |
13 | 1, 13 | 2 | 14 | 1 | Prime: σ1(n) = 1 + n so s(n) = 1 |
14 | 1, 2, 7, 14 | 4 | 24 | 10 | |
15 | 1, 3, 5, 15 | 4 | 24 | 9 | |
16 | 1, 2, 4, 8, 16 | 5 | 31 | 15 | square number: σ0(n) is odd; power of 2: s(n) = n − 1 (almost-perfect) |
σ0(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 3 | 4 | 2 | |
12+ | 6 | 2 | 4 | 4 | 5 | 2 | 6 | 2 | 6 | 4 | 4 | 2 |
24+ | 8 | 3 | 4 | 4 | 6 | 2 | 8 | 2 | 6 | 4 | 4 | 4 |
36+ | 9 | 2 | 4 | 4 | 8 | 2 | 8 | 2 | 6 | 6 | 4 | 2 |
48+ | 10 | 3 | 6 | 4 | 6 | 2 | 8 | 4 | 8 | 4 | 4 | 2 |
60+ | 12 | 2 | 4 | 6 | 7 | 4 | 8 | 2 | 6 | 4 | 8 | 2 |
72+ | 12 | 2 | 4 | 6 | 6 | 4 | 8 | 2 | 10 | 5 | 4 | 2 |
84+ | 12 | 4 | 4 | 4 | 8 | 2 | 12 | 4 | 6 | 4 | 4 | 4 |
96+ | 12 | 2 | 6 | 6 | 9 | 2 | 8 | 2 | 8 | 8 | 4 | 2 |
108+ | 12 | 2 | 8 | 4 | 10 | 2 | 8 | 4 | 6 | 6 | 4 | 4 |
120+ | 16 | 3 | 4 | 4 | 6 | 4 | 12 | 2 | 8 | 4 | 8 | 2 |
132+ | 12 | 4 | 4 | 8 | 8 | 2 | 8 | 2 | 12 | 4 | 4 | 4 |
σ1(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 3 | 4 | 7 | 6 | 12 | 8 | 15 | 13 | 18 | 12 | |
12+ | 28 | 14 | 24 | 24 | 31 | 18 | 39 | 20 | 42 | 32 | 36 | 24 |
24+ | 60 | 31 | 42 | 40 | 56 | 30 | 72 | 32 | 63 | 48 | 54 | 48 |
36+ | 91 | 38 | 60 | 56 | 90 | 42 | 96 | 44 | 84 | 78 | 72 | 48 |
48+ | 124 | 57 | 93 | 72 | 98 | 54 | 120 | 72 | 120 | 80 | 90 | 60 |
60+ | 168 | 62 | 96 | 104 | 127 | 84 | 144 | 68 | 126 | 96 | 144 | 72 |
72+ | 195 | 74 | 114 | 124 | 140 | 96 | 168 | 80 | 186 | 121 | 126 | 84 |
84+ | 224 | 108 | 132 | 120 | 180 | 90 | 234 | 112 | 168 | 128 | 144 | 120 |
96+ | 252 | 98 | 171 | 156 | 217 | 102 | 216 | 104 | 210 | 192 | 162 | 108 |
108+ | 280 | 110 | 216 | 152 | 248 | 114 | 240 | 144 | 210 | 182 | 180 | 144 |
120+ | 360 | 133 | 186 | 168 | 224 | 156 | 312 | 128 | 255 | 176 | 252 | 132 |
132+ | 336 | 160 | 204 | 240 | 270 | 138 | 288 | 140 | 336 | 192 | 216 | 168 |
σ2(n) | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 5 | 10 | 21 | 26 | 50 | 50 | 85 | 91 | 130 | 122 | |
12+ | 210 | 170 | 250 | 260 | 341 | 290 | 455 | 362 | 546 | 500 | 610 | 530 |
24+ | 850 | 651 | 850 | 820 | 1050 | 842 | 1300 | 962 | 1365 | 1220 | 1450 | 1300 |
36+ | 1911 | 1370 | 1810 | 1700 | 2210 | 1682 | 2500 | 1850 | 2562 | 2366 | 2650 | 2210 |
48+ | 3410 | 2451 | 3255 | 2900 | 3570 | 2810 | 4100 | 3172 | 4250 | 3620 | 4210 | 3482 |
60+ | 5460 | 3722 | 4810 | 4550 | 5461 | 4420 | 6100 | 4490 | 6090 | 5300 | 6500 | 5042 |
72+ | 7735 | 5330 | 6850 | 6510 | 7602 | 6100 | 8500 | 6242 | 8866 | 7381 | 8410 | 6890 |
84+ | 10500 | 7540 | 9250 | 8420 | 10370 | 7922 | 11830 | 8500 | 11130 | 9620 | 11050 | 9412 |
96+ | 13650 | 9410 | 12255 | 11102 | 13671 | 10202 | 14500 | 10610 | 14450 | 13000 | 14050 | 11450 |
108+ | 17220 | 11882 | 15860 | 13700 | 17050 | 12770 | 18100 | 13780 | 17682 | 15470 | 17410 | 14500 |
120+ | 22100 | 14763 | 18610 | 16820 | 20202 | 16276 | 22750 | 16130 | 21845 | 18500 | 22100 | 17162 |
132+ | 25620 | 18100 | 22450 | 21320 | 24650 | 18770 | 26500 | 19322 | 27300 | 22100 | 25210 | 20740 |
The cases x = 2 to 5 are listed in A001157 −
A001160, x = 6 to 24 are listed in
A013954 −
A013972.
Properties
Formulas at prime powers
For a prime number p,
- σ0(p)=2σ0(pn)=n+1σ1(p)=p+1displaystyle beginalignedsigma _0(p)&=2\sigma _0(p^n)&=n+1\sigma _1(p)&=p+1endaligned
because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,
- σ0(pn#)=2ndisplaystyle sigma _0(p_n#)=2^n,
since n prime factors allow a sequence of binary selection (pidisplaystyle p_i or 1) from n terms for each proper divisor formed.
Clearly, 1<σ0(n)<ndisplaystyle 1<sigma _0(n)<n and σ(n) > n for all n > 2.
The divisor function is multiplicative, but not completely multiplicative. The consequence of this is that, if we write
- n=∏i=1rpiaidisplaystyle n=prod _i=1^rp_i^a_i
where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have
- σx(n)=∏i=1r∑j=0aipijx=∏i=1r(1+pix+pi2x+⋯+piaix).displaystyle sigma _x(n)=prod _i=1^rsum _j=0^a_ip_i^jx=prod _i=1^r(1+p_i^x+p_i^2x+cdots +p_i^a_ix).
"/>
which is equivalent to the useful formula:
- σx(n)=∏i=1rpi(ai+1)x−1pix−1displaystyle sigma _x(n)=prod _i=1^rfrac p_i^(a_i+1)x-1p_i^x-1
It follows (by setting x = 0) that d(n) is:
- σ0(n)=∏i=1r(ai+1).displaystyle sigma _0(n)=prod _i=1^r(a_i+1).
For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate σ0(24)displaystyle sigma _0(24) as so:
- σ0(24)=∏i=12(ai+1)=(3+1)(1+1)=4⋅2=8.displaystyle beginalignedsigma _0(24)&=prod _i=1^2(a_i+1)\&=(3+1)(1+1)=4cdot 2=8.endaligned
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
Other properties and identities
Euler proved the remarkable recurrence:
[4][5]
- σ(n)=σ(n−1)+σ(n−2)−σ(n−5)−σ(n−7)+σ(n−12)+σ(n−15)+⋯=∑i∈Z(−1)i+1(σ(n−12(3i2−i))+δ(n,12(3i2−i))n)displaystyle beginarrayrclsigma (n)&=&sigma (n-1)+sigma (n-2)-sigma (n-5)-sigma (n-7)+sigma (n-12)+sigma (n-15)+cdots \&=&sum _iin mathbb Z (-1)^i+1left(sigma (n-frac 12(3i^2-i))+delta (n,frac 12(3i^2-i)),nright)endarray
where we set σ(i)=0displaystyle sigma (i)=0 for i≤0displaystyle ileq 0
,
we use the Kronecker delta δ(⋅,⋅)displaystyle delta (cdot ,cdot ), and 12(3i2−i)displaystyle tfrac 12(3i^2-i)
are the pentagonal numbers. Indeed, Euler proved this by logarithmic differentiation of the identity in his Pentagonal number theorem.
For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and σ0(n)displaystyle sigma _0(n) is even; for a square integer, one divisor (namely ndisplaystyle sqrt n
) is not paired with a distinct divisor and σ0(n)displaystyle sigma _0(n)
is odd. Similarly, the number σ1(n)displaystyle sigma _1(n)
is odd if and only if n is a square or twice a square.[citation needed]
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself.
This function is the one used to recognize perfect numbers which are the n for which s(n) = n. If s(n) > n then n is an abundant number and if s(n) < n then n is a deficient number.
If n is a power of 2, for example, n=2kdisplaystyle n=2^k, then σ(n)=2⋅2k−1=2n−1,displaystyle sigma (n)=2cdot 2^k-1=2n-1,
and s(n) = n - 1, which makes n almost-perfect.
As an example, for two distinct primes p and q with p < q, let
- n=pq.displaystyle n=pq.,
Then
- σ(n)=(p+1)(q+1)=n+1+(p+q),displaystyle sigma (n)=(p+1)(q+1)=n+1+(p+q),,
- φ(n)=(p−1)(q−1)=n+1−(p+q),displaystyle varphi (n)=(p-1)(q-1)=n+1-(p+q),,
and
- n+1=(σ(n)+φ(n))/2,displaystyle n+1=(sigma (n)+varphi (n))/2,,
- p+q=(σ(n)−φ(n))/2,displaystyle p+q=(sigma (n)-varphi (n))/2,,
where φ(n)displaystyle varphi (n) is Euler's totient function.
Then, the roots of:
- (x−p)(x−q)=x2−(p+q)x+n=x2−[(σ(n)−φ(n))/2]x+[(σ(n)+φ(n))/2−1]=0displaystyle (x-p)(x-q)=x^2-(p+q)x+n=x^2-[(sigma (n)-varphi (n))/2]x+[(sigma (n)+varphi (n))/2-1]=0,
allow us to express p and q in terms of σ(n) and φ(n) only, without even knowing n or p+q, as:
- p=(σ(n)−φ(n))/4−[(σ(n)−φ(n))/4]2−[(σ(n)+φ(n))/2−1],displaystyle p=(sigma (n)-varphi (n))/4-sqrt [(sigma (n)-varphi (n))/4]^2-[(sigma (n)+varphi (n))/2-1],,
- q=(σ(n)−φ(n))/4+[(σ(n)−φ(n))/4]2−[(σ(n)+φ(n))/2−1].displaystyle q=(sigma (n)-varphi (n))/4+sqrt [(sigma (n)-varphi (n))/4]^2-[(sigma (n)+varphi (n))/2-1].,
Also, knowing n and either σ(n)displaystyle sigma (n) or φ(n)displaystyle varphi (n)
(or knowing p+q and either σ(n)displaystyle sigma (n)
or φ(n)displaystyle varphi (n)
) allows us to easily find p and q.
In 1984, Roger Heath-Brown proved that the equality
- σ0(n)=σ0(n+1)displaystyle sigma _0(n)=sigma _0(n+1)
is true for an infinity of values of n, see A005237.
Series relations
Two Dirichlet series involving the divisor function are:
- ∑n=1∞σa(n)ns=ζ(s)ζ(s−a)fors>1,s>a+1,displaystyle sum _n=1^infty frac sigma _a(n)n^s=zeta (s)zeta (s-a)quad textforquad s>1,s>a+1,
which for d(n) = σ0(n) gives
- ∑n=1∞d(n)ns=ζ2(s)fors>1,displaystyle sum _n=1^infty frac d(n)n^s=zeta ^2(s)quad textforquad s>1,
and
- ∑n=1∞σa(n)σb(n)ns=ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)ζ(2s−a−b).displaystyle sum _n=1^infty frac sigma _a(n)sigma _b(n)n^s=frac zeta (s)zeta (s-a)zeta (s-b)zeta (s-a-b)zeta (2s-a-b).
A Lambert series involving the divisor function is:
- ∑n=1∞qnσa(n)=∑n=1∞∑j=1∞naqjn=∑n=1∞naqn1−qndisplaystyle sum _n=1^infty q^nsigma _a(n)=sum _n=1^infty sum _j=1^infty n^aq^j,n=sum _n=1^infty frac n^aq^n1-q^n
for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.
Growth rate
In little-o notation, the divisor function satisfies the inequality (see page 296 of Apostol’s book[6])
- for all ϵ>0,d(n)=o(nϵ).displaystyle mboxfor all epsilon >0,quad d(n)=o(n^epsilon ).
More precisely, Severin Wigert showed that
- lim supn→∞logd(n)logn/loglogn=log2.displaystyle limsup _nto infty frac log d(n)log n/log log n=log 2.
On the other hand, since there are infinitely many prime numbers,
- lim infn→∞d(n)=2.displaystyle liminf _nto infty d(n)=2.
In Big-O notation, Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality (see Theorem 3.3 of Apostol’s book[6])
- for all x≥1,∑n≤xd(n)=xlogx+(2γ−1)x+O(x),displaystyle mboxfor all xgeq 1,sum _nleq xd(n)=xlog x+(2gamma -1)x+O(sqrt x),
where γdisplaystyle gamma is Euler's gamma constant. Improving the bound O(x)displaystyle O(sqrt x)
in this formula is known as Dirichlet's divisor problem.
The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by:
- lim supn→∞σ(n)nloglogn=eγ,displaystyle limsup _nrightarrow infty frac sigma (n)n,log log n=e^gamma ,
"/>
where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 (Grönwall 1913). His proof uses Mertens' 3rd theorem, which says that
- limn→∞1logn∏p≤npp−1=eγ,displaystyle lim _nto infty frac 1log nprod _pleq nfrac pp-1=e^gamma ,
where p denotes a prime.
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the inequality:
σ(n)<eγnloglogndisplaystyle sigma (n)<e^gamma nlog log n(Robin's inequality)
holds for all sufficiently large n (Ramanujan 1997). The largest known value that violates the inequality is n=5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true (Robin 1984). This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant (Akbary & Friggstad 2009). It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime (Choie et al. 2007).
Robin also proved, unconditionally, that the inequality
- σ(n)<eγnloglogn+0.6483 nloglogndisplaystyle sigma (n)<e^gamma nlog log n+frac 0.6483 nlog log n
holds for all n ≥ 3.
A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that
- σ(n)<Hn+ln(Hn)eHndisplaystyle sigma (n)<H_n+ln(H_n)e^H_n
for every natural number n > 1, where Hndisplaystyle H_n is the nth harmonic number, (Lagarias 2002).
See also
Euler's totient function (Euler's phi function)- Table of divisors
Divisor sum convolutions Lists a few identities involving the divisor functions- Unitary divisor
- Refactorable number
Notes
^ ab Long (1972, p. 46)
^ Pettofrezzo & Byrkit (1970, p. 63)
^ Pettofrezzo & Byrkit (1970, p. 58)
^ https://arxiv.org/abs/math/0411587, An observation on the sums of divisors
^ http://eulerarchive.maa.org//pages/E175.html, Decouverte d'une loi tout extraordinaire des nombres par rapport a la somme de leurs diviseurs
^ ab Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
References
Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (PDF), American Mathematical Monthly, 116 (3): 273–275, doi:10.4169/193009709X470128, archived from the original (PDF) on 2014-04-11 .
Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. ISBN 0-262-02405-5, see page 234 in section 8.8.
Caveney, Geoffrey; Nicolas, Jean-Louis; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (PDF), INTEGERS: the Electronic Journal of Combinatorial Number Theory, 11: A33
Choie, YoungJu; Lichiardopol, Nicolas; Moree, Pieter; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis", Journal de théorie des nombres de Bordeaux, 19 (2): 357–372, arXiv:math.NT/0604314, doi:10.5802/jtnb.591, ISSN 1246-7405, MR 2394891, Zbl 1163.11059
Grönwall, Thomas Hakon (1913), "Some asymptotic expressions in the theory of numbers", Transactions of the American Mathematical Society, 14: 113–122, doi:10.1090/S0002-9947-1913-1500940-6
Ivić, Aleksandar (1985), The Riemann zeta-function. The theory of the Riemann zeta-function with applications, A Wiley-Interscience Publication, New York etc.: John Wiley & Sons, pp. 385–440, ISBN 0-471-80634-X, Zbl 0556.10026
Lagarias, Jeffrey C. (2002), "An elementary problem equivalent to the Riemann hypothesis", The American Mathematical Monthly, 109 (6): 534–543, arXiv:math/0008177, doi:10.2307/2695443, ISSN 0002-9890, JSTOR 2695443, MR 1908008
Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950
Ramanujan, Srinivasa (1997), "Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin", The Ramanujan Journal, 1 (2): 119–153, doi:10.1023/A:1009764017495, ISSN 1382-4090, MR 1606180
Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77081766
Robin, Guy (1984), "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées, Neuvième Série, 63 (2): 187–213, ISSN 0021-7824, MR 0774171
Williams, Kenneth S. (2011), Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge: Cambridge University Press, ISBN 978-0-521-17562-3, Zbl 1227.11002- Weisstein, Eric W. "Divisor Function". MathWorld.
- Weisstein, Eric W. "Robin's Theorem". MathWorld.
Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions PDF of a paper by Huard, Ou, Spearman, and Williams. Contains elementary (i.e. not relying on the theory of modular forms) proofs of divisor sum convolutions, formulas for the number of ways of representing a number as a sum of triangular numbers, and related results.


Comments
Post a Comment