Adjoint representation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP










In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, in the case where G is the Lie group of invertible matrices of size n, GL(n), the Lie algebra is the vector space of all (not necessarily invertible) n-by-n matrices. So in this case the adjoint representation is the vector space of n-by-n matrices xdisplaystyle xx, and any element g in GL(n) acts as a linear transformation of this vector space given by conjugation: x↦gxg−1displaystyle xmapsto gxg^-1xmapsto gxg^-1.


For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.




Contents





  • 1 Definition

    • 1.1 Derivative of Ad



  • 2 Adjoint representation of a Lie algebra


  • 3 Structure constants


  • 4 Examples


  • 5 Properties


  • 6 Roots of a semisimple Lie group

    • 6.1 Example SL(2, R)



  • 7 Variants and analogues


  • 8 Notes


  • 9 References




Definition



Let G be a Lie group, and let


Ψ:G→Aut⁡(G)displaystyle Psi :Gto operatorname Aut (G)displaystyle Psi :Gto operatorname Aut (G)

be the mapping g ↦ Ψg,
with Aut(G) the automorphism group of G and Ψg: GG given by the inner automorphism


Ψg(h)=ghg−1 .displaystyle Psi _g(h)=ghg^-1~.Psi _g(h)=ghg^-1~.

This Ψ is an example of a Lie group homomorphism.


For each g in G, define Adg to be the derivative of Ψg at the origin:


Adg=(dΨg)e:TeG→TeGdisplaystyle operatorname Ad _g=(dPsi _g)_e:T_eGrightarrow T_eGoperatorname Ad_g=(dPsi _g)_e:T_eGrightarrow T_eG

where d is the differential and g=TeGdisplaystyle mathfrak g=T_eGdisplaystyle mathfrak g=T_eG is the tangent space at the origin e (e being the identity element of the group G). Since Ψgdisplaystyle Psi _gPsi _g is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of gdisplaystyle mathfrak gmathfrak g to itself that preserves the Lie bracket. The map


Ad:G→Aut(g),g↦Adgdisplaystyle mathrm Ad colon Gto mathrm Aut (mathfrak g),,gmapsto mathrm Ad _gmathrm Ad colon Gto mathrm Aut (mathfrak g),,gmapsto mathrm Ad _g

is a group representation called the adjoint representation of G. (Here, Aut(g)displaystyle mathrm Aut (mathfrak g)mathrm Aut (mathfrak g) is a closed[1]Lie subgroup of GL(g)displaystyle mathrm GL (mathfrak g)mathrm GL (mathfrak g) and the above adjoint map is a Lie group homomorphism.)


If G is an (immersed) Lie subgroup of the general linear group GLn(C)displaystyle mathrm GL _n(mathbb C )mathrm GL _n(mathbb C ), then, since the exponential map is the matrix exponential: exp⁡(X)=eXdisplaystyle operatorname exp (X)=e^Xoperatorname exp (X)=e^X, taking the derivative of Ψg(exp⁡(tX))=getXg−1displaystyle Psi _g(operatorname exp (tX))=ge^tXg^-1Psi _g(operatorname exp (tX))=ge^tXg^-1 at t = 0, one gets: for g in G and X in gdisplaystyle mathfrak gmathfrak g,


Adg⁡(X)=gXg−1displaystyle operatorname Ad _g(X)=gXg^-1operatorname Ad _g(X)=gXg^-1

where on the right we have the products of matrices.



Derivative of Ad


One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.


Taking the derivative of the adjoint map


Ad:G→Aut(g)displaystyle mathrm Ad colon Gto mathrm Aut (mathfrak g)mathrm Ad colon Gto mathrm Aut (mathfrak g)

at the identity element gives the adjoint representation of the Lie algebra gdisplaystyle mathfrak gmathfrak g:


ad:g→Der(g)displaystyle mathrm ad colon mathfrak gto mathrm Der (mathfrak g)mathrm ad colon mathfrak gto mathrm Der (mathfrak g)

where Der(g)displaystyle mathrm Der (mathfrak g)mathrm Der (mathfrak g) is the Lie algebra of Aut(g)displaystyle mathrm Aut (mathfrak g)mathrm Aut (mathfrak g) which may be identified with the derivation algebra of gdisplaystyle mathfrak gmathfrak g. One can show that


adx(y)=[x,y]displaystyle mathrm ad _x(y)=[x,y],mathrm ad _x(y)=[x,y],

for all x,y∈gdisplaystyle x,yin mathfrak gx,yin mathfrak g.[2] Thus, adxdisplaystyle mathrm ad _xmathrm ad _x coincides with the same one defined in #Adjoint representation of a Lie algebra below.


Ad and ad are related through the exponential map: Specifically, Adexp(x) = exp(adx) for all x in the Lie algebra.[3] It is a consequence of the general result relating Lie group and Lie algebra homomorphisms via the exponential map.[4]


The upper-case/lower-case notation is used extensively in the literature. Thus, for example, a vector x in the algebra gdisplaystyle mathfrak gmathfrak g generates a vector field X in the group G. Similarly, the adjoint map adxy = [x,y] of vectors in gdisplaystyle mathfrak gmathfrak g is homomorphic to the Lie derivative LXY = [X,Y] of vector fields on the group G considered as a manifold.


Further see the derivative of the exponential map.



Adjoint representation of a Lie algebra


Let gdisplaystyle mathfrak gmathfrak g be a Lie algebra over a field k. Given an element x of a Lie algebra gdisplaystyle mathfrak gmathfrak g, one defines the adjoint action of x on gdisplaystyle mathfrak gmathfrak g as the map


adx:g→gwithadx⁡(y)=[x,y]displaystyle operatorname ad _x:mathfrak gto mathfrak gqquad textwithqquad operatorname ad _x(y)=[x,y]operatorname ad_x:mathfrak gto mathfrak gqquad textwithqquad operatorname ad_x(y)=[x,y]

for all y in gdisplaystyle mathfrak gmathfrak g. It is called the adjoint endomorphism or adjoint action. Then there is the linear mapping


ad:g→End⁡(g)displaystyle operatorname ad :mathfrak gto operatorname End (mathfrak g)operatorname ad:mathfrak gto operatorname End(mathfrak g)

given by x ↦ adx. Within End(g)displaystyle (mathfrak g)(mathfrak g), the Lie bracket is, by definition, given by the commutator of the two operators:


[adx,ady]=adx∘ady−ady∘adxdisplaystyle [operatorname ad _x,operatorname ad _y]=operatorname ad _xcirc operatorname ad _y-operatorname ad _ycirc operatorname ad _x[operatorname ad_x,operatorname ad_y]=operatorname ad_xcirc operatorname ad_y-operatorname ad_ycirc operatorname ad_x

where ∘displaystyle circ circ denotes composition of linear maps. Using the above definition of the Lie bracket, the Jacobi identity


[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0displaystyle [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0

takes the form


([adx,ady])(z)=(ad[x,y])(z)displaystyle left([operatorname ad _x,operatorname ad _y]right)(z)=left(operatorname ad _[x,y]right)(z)left([operatorname ad_x,operatorname ad_y]right)(z)=left(operatorname ad_[x,y]right)(z)

where x, y, and z are arbitrary elements of gdisplaystyle mathfrak gmathfrak g.


This last identity says that ad is a Lie algebra homomorphism; i.e., a linear mapping that takes brackets to brackets. Hence, ad is a representation of a Lie algebra and is called the adjoint representation of the algebra gdisplaystyle mathfrak gmathfrak g.


If gdisplaystyle mathfrak gmathfrak g is finite-dimensional, then End(g)displaystyle (mathfrak g)(mathfrak g) is isomorphic to gl(g)displaystyle mathfrak gl(mathfrak g)mathfrak gl(mathfrak g), the Lie algebra of the general linear group over the vector space gdisplaystyle mathfrak gmathfrak g and if a basis for it is chosen, the composition corresponds to matrix multiplication.


In a more module-theoretic language, the construction simply says that gdisplaystyle mathfrak gmathfrak g is a module over itself.


The kernel of ad is the center of gdisplaystyle mathfrak gmathfrak g. Next, we consider the image of ad. Recall that a derivation on a Lie algebra is a linear map δ:g→gdisplaystyle delta :mathfrak grightarrow mathfrak gdelta :mathfrak grightarrow mathfrak g that obeys the Leibniz' law, that is,


δ([x,y])=[δ(x),y]+[x,δ(y)]displaystyle delta ([x,y])=[delta (x),y]+[x,delta (y)]delta ([x,y])=[delta (x),y]+[x,delta (y)]

for all x and y in the algebra.


That adx is a derivation is a consequence of the Jacobi identity. This implies that the image of gdisplaystyle mathfrak gmathfrak g under ad is
a subalgebra of Der(g)displaystyle (mathfrak g)(mathfrak g), the space of all derivations of gdisplaystyle mathfrak gmathfrak g.


When g=Lie⁡(G)displaystyle mathfrak g=operatorname Lie (G)mathfrak g=operatorname Lie (G) is the Lie algebra of a Lie group G, ad is the differential of Ad at the identity element of G.



Structure constants


The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let ei be a set of basis vectors for the algebra, with


[ei,ej]=∑kcijkek.displaystyle [e^i,e^j]=sum _kc^ij_ke^k.[e^i,e^j]=sum _kc^ij_ke^k.

Then the matrix elements for
adei
are given by


[adei]kj=cijk .displaystyle left[operatorname ad _e^iright]_k^j=c^ij_k~.left[operatorname ad_e^iright]_k^j=c^ij_k~.

Thus, for example, the adjoint representation of su(2) is the defining rep of so(3).



Examples


  • If G is abelian of dimension n, the adjoint representation of G is the trivial n-dimensional representation.

  • If G is a matrix Lie group (i.e. a closed subgroup of GL(n,ℂ)), then its Lie algebra is an algebra of n×n matrices with the commutator for a Lie bracket (i.e. a subalgebra of gln(C)displaystyle mathfrak gl_n(mathbb C )mathfrak gl_n(mathbb C)). In this case, the adjoint map is given by Adg(x) = gxg−1.

  • If G is SL(2, R) (real 2×2 matrices with determinant 1), the Lie algebra of G consists of real 2×2 matrices with trace 0. The representation is equivalent to that given by the action of G by linear substitution on the space of binary (i.e., 2 variable) quadratic forms.


Properties


The following table summarizes the properties of the various maps mentioned in the definition















Ψ:G→Aut(G)displaystyle Psi colon Gto mathrm Aut (G),Psi colon Gto mathrm Aut (G),

Ψg:G→Gdisplaystyle Psi _gcolon Gto G,Psi _gcolon Gto G,
Lie group homomorphism:
  • Ψgh=ΨgΨhdisplaystyle Psi _gh=Psi _gPsi _hPsi _gh=Psi _gPsi _h
Lie group automorphism:
  • Ψg(ab)=Ψg(a)Ψg(b)displaystyle Psi _g(ab)=Psi _g(a)Psi _g(b)Psi _g(ab)=Psi _g(a)Psi _g(b)

  • (Ψg)−1=Ψg−1displaystyle (Psi _g)^-1=Psi _g^-1(Psi _g)^-1=Psi _g^-1


Ad:G→Aut(g)displaystyle mathrm Ad colon Gto mathrm Aut (mathfrak g)mathrm Ad colon Gto mathrm Aut (mathfrak g)

Adg:g→gdisplaystyle mathrm Ad _gcolon mathfrak gto mathfrak gmathrm Ad _gcolon mathfrak gto mathfrak g
Lie group homomorphism:
  • Adgh=AdgAdhdisplaystyle mathrm Ad _gh=mathrm Ad _gmathrm Ad _hmathrm Ad _gh=mathrm Ad _gmathrm Ad _h
Lie algebra automorphism:

  • Adgdisplaystyle mathrm Ad _gmathrm Ad _g is linear

  • (Adg)−1=Adg−1displaystyle (mathrm Ad _g)^-1=mathrm Ad _g^-1(mathrm Ad _g)^-1=mathrm Ad _g^-1

  • Adg[x,y]=[Adgx,Adgy]displaystyle mathrm Ad _g[x,y]=[mathrm Ad _gx,mathrm Ad _gy]mathrm Ad _g[x,y]=[mathrm Ad _gx,mathrm Ad _gy]


ad:g→Der(g)displaystyle mathrm ad colon mathfrak gto mathrm Der (mathfrak g)mathrm ad colon mathfrak gto mathrm Der (mathfrak g)

adx:g→gdisplaystyle mathrm ad _xcolon mathfrak gto mathfrak gmathrm ad _xcolon mathfrak gto mathfrak g
Lie algebra homomorphism:

  • addisplaystyle mathrm ad mathrm ad is linear

  • ad[x,y]=[adx,ady]displaystyle mathrm ad _[x,y]=[mathrm ad _x,mathrm ad _y]mathrm ad _[x,y]=[mathrm ad _x,mathrm ad _y]

Lie algebra derivation:

  • adxdisplaystyle mathrm ad _xmathrm ad _x is linear

  • adx[y,z]=[adxy,z]+[y,adxz]displaystyle mathrm ad _x[y,z]=[mathrm ad _xy,z]+[y,mathrm ad _xz]mathrm ad _x[y,z]=[mathrm ad _xy,z]+[y,mathrm ad _xz]

The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G0 of G. By the first isomorphism theorem we have


Ad(G)≅G/ZG(G0).displaystyle mathrm Ad (G)cong G/Z_G(G_0).mathrm Ad (G)cong G/Z_G(G_0).

Given a finite-dimensional real Lie algebra gdisplaystyle mathfrak gmathfrak g, by Lie's third theorem, there is a connected Lie group Int⁡(g)displaystyle operatorname Int (mathfrak g)operatorname Int (mathfrak g) whose Lie algebra is the image of the adjoint representation of gdisplaystyle mathfrak gmathfrak g (i.e., Lie⁡(Int⁡(g))=ad⁡(g)displaystyle operatorname Lie (operatorname Int (mathfrak g))=operatorname ad (mathfrak g)operatorname Lie (operatorname Int (mathfrak g))=operatorname ad (mathfrak g).) It is called the adjoint group of gdisplaystyle mathfrak gmathfrak g.


Now, if gdisplaystyle mathfrak gmathfrak g is the Lie algebra of a connected Lie group G, then Int⁡(g)displaystyle operatorname Int (mathfrak g)operatorname Int (mathfrak g) is the image of the adjoint representation of G: Int⁡(g)=Ad⁡(G)displaystyle operatorname Int (mathfrak g)=operatorname Ad (G)operatorname Int (mathfrak g)=operatorname Ad (G).



Roots of a semisimple Lie group


If G is semisimple, the non-zero weights of the adjoint representation form a root system.[5] (In general, one needs to pass to the complexification of the Lie algebra before proceeding.) To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t1, ..., tn) as our maximal torus T. Conjugation by an element of T sends


[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann]↦[a11t1t2−1a12⋯t1tn−1a1nt2t1−1a21a22⋯t2tn−1a2n⋮⋮⋱⋮tnt1−1an1tnt2−1an2⋯ann].displaystyle beginbmatrixa_11&a_12&cdots &a_1n\a_21&a_22&cdots &a_2n\vdots &vdots &ddots &vdots \a_n1&a_n2&cdots &a_nn\endbmatrixmapsto beginbmatrixa_11&t_1t_2^-1a_12&cdots &t_1t_n^-1a_1n\t_2t_1^-1a_21&a_22&cdots &t_2t_n^-1a_2n\vdots &vdots &ddots &vdots \t_nt_1^-1a_n1&t_nt_2^-1a_n2&cdots &a_nn\endbmatrix.beginbmatrixa_11&a_12&cdots &a_1n\a_21&a_22&cdots &a_2n\vdots &vdots &ddots &vdots \a_n1&a_n2&cdots &a_nn\endbmatrixmapsto beginbmatrixa_11&t_1t_2^-1a_12&cdots &t_1t_n^-1a_1n\t_2t_1^-1a_21&a_22&cdots &t_2t_n^-1a_2n\vdots &vdots &ddots &vdots \t_nt_1^-1a_n1&t_nt_2^-1a_n2&cdots &a_nn\endbmatrix.

Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors titj−1 on the various off-diagonal entries. The roots of G are the weights diag(t1, ..., tn) → titj−1. This accounts for the standard description of the root system of G = SLn(R) as the set of vectors of the form eiej.



Example SL(2, R)


Let us compute the root system for one of the simplest cases of Lie Groups. Let us consider the group SL(2, R) of two dimensional matrices with determinant 1. This consists of the set of matrices of the form:


[abcd]displaystyle beginbmatrixa&b\c&d\endbmatrixbeginbmatrixa&b\c&d\endbmatrix

with a, b, c, d real and ad − bc = 1.


A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form


[t100t2]=[t1001/t1]=[exp⁡(θ)00exp⁡(−θ)]displaystyle beginbmatrixt_1&0\0&t_2\endbmatrix=beginbmatrixt_1&0\0&1/t_1\endbmatrix=beginbmatrixexp(theta )&0\0&exp(-theta )\endbmatrixbeginbmatrixt_1&0\0&t_2\endbmatrix=beginbmatrixt_1&0\0&1/t_1\endbmatrix=beginbmatrixexp(theta )&0\0&exp(-theta )\endbmatrix

with t1t2=1displaystyle t_1t_2=1t_1t_2=1. The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices


[θ00−θ]=θ[1000]−θ[0001]=θ(e1−e2).displaystyle beginbmatrixtheta &0\0&-theta \endbmatrix=theta beginbmatrix1&0\0&0\endbmatrix-theta beginbmatrix0&0\0&1\endbmatrix=theta (e_1-e_2).beginbmatrixtheta &0\0&-theta \endbmatrix=theta beginbmatrix1&0\0&0\endbmatrix-theta beginbmatrix0&0\0&1\endbmatrix=theta (e_1-e_2).

If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain


[t1001/t1][abcd][1/t100t1]=[at1bt1c/t1d/t1][1/t100t1]=[abt12ct1−2d]displaystyle beginbmatrixt_1&0\0&1/t_1\endbmatrixbeginbmatrixa&b\c&d\endbmatrixbeginbmatrix1/t_1&0\0&t_1\endbmatrix=beginbmatrixat_1&bt_1\c/t_1&d/t_1\endbmatrixbeginbmatrix1/t_1&0\0&t_1\endbmatrix=beginbmatrixa&bt_1^2\ct_1^-2&d\endbmatrixbeginbmatrixt_1&0\0&1/t_1\endbmatrixbeginbmatrixa&b\c&d\endbmatrixbeginbmatrix1/t_1&0\0&t_1\endbmatrix=beginbmatrixat_1&bt_1\c/t_1&d/t_1\endbmatrixbeginbmatrix1/t_1&0\0&t_1\endbmatrix=beginbmatrixa&bt_1^2\ct_1^-2&d\endbmatrix

The matrices


[1000][0001][0100][0010]displaystyle beginbmatrix1&0\0&0\endbmatrixbeginbmatrix0&0\0&1\endbmatrixbeginbmatrix0&1\0&0\endbmatrixbeginbmatrix0&0\1&0\endbmatrixbeginbmatrix1&0\0&0\endbmatrixbeginbmatrix0&0\0&1\endbmatrixbeginbmatrix0&1\0&0\endbmatrixbeginbmatrix0&0\1&0\endbmatrix

are then 'eigenvectors' of the conjugation operation with eigenvalues 1,1,t12,t1−2displaystyle 1,1,t_1^2,t_1^-21,1,t_1^2,t_1^-2. The function Λ which gives t12displaystyle t_1^2t_1^2 is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function λ giving θ is a weight of the Lie Algebra with weight space given by the span of the matrices.


It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).



Variants and analogues


The adjoint representation can also be defined for algebraic groups over any field.


The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of nilpotent Lie groups.



Notes




  1. ^ The condition that a linear map is a Lie algebra homomorphism is a closed condition.


  2. ^
    This is shown as follows:
    adx(y)=d(Adx)e(y)=limε→0(I+εx)y(I+εx)−1−yε=limε→0(I+εx)y(I−εx+(εx)2+O(ε3))−yε=limε→0((I+εx)yI−(I+εx)yεx+(I+εx)y(εx)2+O(ε3))−yε=limε→0(IyI+εxyI−Iyεx−εxyεx+Iy(εx)2+εxy(εx)2+O(ε3))−yε=limε→0y+xyε−yxε−xyxε2+yx2ε2+xyx2ε2+O(ε3)−yε=limε→0xy−yx−xyxε+yx2ε+xyx2ε+O(ε2)=[x,y]displaystyle beginalignedmathrm ad _x(y)&=d(mathrm Ad _x)_e(y)\&=lim _varepsilon to 0frac (I+varepsilon x)y(I+varepsilon x)^-1-yvarepsilon \&=lim _varepsilon to 0frac (I+varepsilon x)y(I-varepsilon x+(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac ((I+varepsilon x)yI-(I+varepsilon x)yvarepsilon x+(I+varepsilon x)y(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac (IyI+varepsilon xyI-Iyvarepsilon x-varepsilon xyvarepsilon x+Iy(varepsilon x)^2+varepsilon xy(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac y+xyvarepsilon -yxvarepsilon -xyxvarepsilon ^2+yx^2varepsilon ^2+xyx^2varepsilon ^2+O(varepsilon ^3)-yvarepsilon \&=lim _varepsilon to 0xy-yx-xyxvarepsilon +yx^2varepsilon +xyx^2varepsilon +O(varepsilon ^2)\&=[x,y]endalignedbeginalignedmathrm ad _x(y)&=d(mathrm Ad _x)_e(y)\&=lim _varepsilon to 0frac (I+varepsilon x)y(I+varepsilon x)^-1-yvarepsilon \&=lim _varepsilon to 0frac (I+varepsilon x)y(I-varepsilon x+(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac ((I+varepsilon x)yI-(I+varepsilon x)yvarepsilon x+(I+varepsilon x)y(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac (IyI+varepsilon xyI-Iyvarepsilon x-varepsilon xyvarepsilon x+Iy(varepsilon x)^2+varepsilon xy(varepsilon x)^2+O(varepsilon ^3))-yvarepsilon \&=lim _varepsilon to 0frac y+xyvarepsilon -yxvarepsilon -xyxvarepsilon ^2+yx^2varepsilon ^2+xyx^2varepsilon ^2+O(varepsilon ^3)-yvarepsilon \&=lim _varepsilon to 0xy-yx-xyxvarepsilon +yx^2varepsilon +xyx^2varepsilon +O(varepsilon ^2)\&=[x,y]endaligned



  3. ^ Hall 2015 Proposition 3.35


  4. ^ Hall 2015 Theorem 3.28


  5. ^ Hall 2015 Section 7.3




References



  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103. 


  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, 222 (2nd ed.), Springer, ISBN 978-3319134666 .

Comments

  1. m. pedro contact email / whatsapp +18632310632 détails, pedroloanss@gmail.com. cela m'a aidé avec un prêt de 200 000,00 euros pour démarrer mon entreprise et je suis très reconnaissant, c'était vraiment difficile pour moi ici d'essayer de me frayer un chemin en tant que mère célibataire, les choses n'ont pas été faciles avec moi mais avec l'aide de m. pedro mettre le sourire sur mon visage alors que je vois mon entreprise se renforcer et se développer également. Je sais que vous serez peut-être surpris de savoir pourquoi j'ai mis des choses comme ça ici, mais je dois vraiment exprimer ma gratitude pour que toute personne cherchant une aide financière ou traversant des difficultés avec son entreprise ou souhaitant démarrer un projet d'entreprise puisse le voir et espérer s'en sortir les difficultés.. merci.

    ReplyDelete

Post a Comment

Popular posts from this blog

Executable numpy error

Trying to Print Gridster Items to PDF without overlapping contents

Mass disable jenkins jobs