Illegal Instruction: 4 error when running any Tensorflow program

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP

Illegal Instruction: 4 error when running any Tensorflow program



I am trying to train a Tensorflow Convolutional Neural Network, and I am always getting a cryptic error regardless of the environment in which i run the program.



In Jupyter Notebook, the kernel simply dies.



In Terminal, I get "Illegal Instruction: 4" with no Traceback.



In Pycharm, I get: "Process finished with exit code 132 (interrupted by signal 4: SIGILL)".



I have looked all over the Internet and I have not found any instance in which this particular error was thrown in this situation. I would appreciate it if someone could help shed some light on this error.



I am using Mac OS X High Sierra with python 3.6.2



My code can be found below and, as I said earlier, there is no traceback.


import tensorflow as tf
import numpy as np
import pandas as pd

# OS to load files and save checkpoints
import os

image_height = 60
image_width = 1

image1_height = 15
image2_width = 1
model_name = "tensorflowCNN"

train_data = np.asarray(pd.read_csv("/home/student/Desktop/TrainingInput.csv", usecols=[1]))
lis = train_data.tolist()
lis = lis[0:60]
lis = [x[0].strip('n,') for x in lis]
nlis =
for i in lis:
nlis.append(i.split())
for i in range(len(nlis)):
nlis[i] = [float(x) for x in nlis[i] if x != "...,"]
nlis = [np.mean(x) for x in nlis]

train_data = np.asarray(nlis)
train_labels = np.asarray(pd.read_csv("/home/student/Desktop/TrainingInput.csv", usecols=[2]))
mylist = train_labels.tolist()
mylist = mylist[0:60]
mylist = [x[0] for x in mylist]
for i in range(len(mylist)):
if mylist[i] == "GravelTraining":
mylist[i] = 1.0
elif mylist[i] == "WaterTraining":
mylist[i] = 2.0
else:
mylist[i] = 3.0
print(mylist)
train_labels = np.asarray(mylist)

eval_data = np.asarray(pd.read_csv("/home/student/Desktop/TestingInput.csv", usecols=[1]))
List = eval_data.tolist()
List = List[0:15]
eval_data = np.asarray(List)
eval_labels = np.asarray(pd.read_csv("/home/student/Desktop/TestingInput.csv", usecols=[2]))
myList = eval_labels.tolist()
myList = myList[0:15]
eval_labels = np.asarray(myList)

category_names = list(map(str, range(3)))

# TODO: Process mnist data
train_data = np.reshape(train_data, (-1, image_height, image_width, 1))
train_labels = np.reshape(train_labels, (-1, image_height, image_width, 1))
eval_labels = np.reshape(eval_labels, (-1, image1_height, image2_width, 1))
eval_data = np.reshape(eval_data, (-1, image1_height, image2_width, 1))


# TODO: The neural network
class ConvNet:

def __init__(self, image_height, Image_width, num_classes, chan):
self.input_layer = tf.placeholder(dtype=tf.float32, shape=[1, image_height, Image_width, chan], name="inputs")

conv_layer_1 = tf.layers.conv2d(self.input_layer, filters=32, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)
pooling_layer_1 = tf.layers.max_pooling2d(conv_layer_1, pool_size=[2, 1], strides=1)

conv_layer_2 = tf.layers.conv2d(pooling_layer_1, filters=64, kernel_size=[5, 5], padding="same",
activation=tf.nn.relu)
pooling_layer_2 = tf.layers.max_pooling2d(conv_layer_2, pool_size=[2,1], strides=2)

conv_layer_3 = tf.layers.conv2d(pooling_layer_2, filters=128, kernel_size=[5,5], padding="same",
activation=tf.nn.relu)
pooling_layer_3 = tf.layers.max_pooling2d(conv_layer_3, pool_size=[2,1], strides=2)

flattened_pooling = tf.layers.flatten(pooling_layer_1)
dense_layer = tf.layers.dense(flattened_pooling, 60, activation=tf.nn.relu)

dropout = tf.layers.dropout(dense_layer, rate=0.4, training=True)

output_dense_layer = tf.layers.dense(dropout, num_classes)

self.choice = tf.argmax(output_dense_layer, axis=1)
self.probabilities = tf.nn.softmax(output_dense_layer)

self.labels = tf.placeholder(dtype=tf.float32, name="labels")
self.accuracy, self.accuracy_op = tf.metrics.accuracy(self.labels, self.choice)

one_hot_labels = tf.one_hot(indices=tf.cast(self.labels, dtype=tf.int32), depth=num_classes)
self.loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels, logits=output_dense_layer)

optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-2)
self.train_operation = optimizer.minimize(loss=self.loss, global_step=tf.train.get_global_step())


# Training process:variables

training_steps = 20000
batch_size = 60

path = "./" + model_name + "-cnn/"

load_checkpoint = False

tf.reset_default_graph()
dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
dataset = dataset.shuffle(buffer_size=train_labels.shape[0])
dataset = dataset.batch(batch_size)
dataset = dataset.repeat()

dataset_iterator = dataset.make_initializable_iterator()
next_element = dataset_iterator.get_next()

cnn = ConvNet(image_height, image_width, 1, 1)
print("milestone1")
saver = tf.train.Saver(max_to_keep=2)
print('milestone2')
if not os.path.exists(path):
os.makedirs(path)
print('milestone3')
with tf.Session() as sess:
# if load_checkpoint:
# print(path)
# checkpoint = tf.train.get_checkpoint_state(path)
# print(checkpoint)
# saver.restore(sess, checkpoint.model_checkpoint_path)
# else:
sess.run(tf.global_variables_initializer())
print('milestone4')
sess.run(tf.local_variables_initializer())
sess.run(dataset_iterator.initializer)
for step in range(training_steps):
current_batch = sess.run(next_element)
batch_inputs = current_batch[0]
batch_labels = current_batch[1]
sess.run((cnn.train_operation, cnn.accuracy_op),
feed_dict=cnn.input_layer: batch_inputs, cnn.labels: batch_labels)

if step % 1 == 0 and step > 0:
current_acc = sess.run(cnn.accuracy)
print("Accuracy at step " + str(step) + ":" + str(current_acc))
saver.save(sess, path + model_name, step)

print("Saving final checkpoint for training session.")
saver.save(sess, path + model_name, step)



Thanks in advance.





What CPU do you have in the machine? This sounds like you have a version of tensorflow that uses CPU extensions that your CPU doesn't have.
– camelccc
12 hours ago





I have a 2.66 GHz Intel Core i7 CPU. Hope that helps. Sorry for the late response
– ab123
12 hours ago






if your guess is correct, how would I resolve the problem?
– ab123
11 hours ago





How did you install Tensorflow?
– Jonathon Reinhart
3 hours ago




1 Answer
1



OK
If you have the 2.66 GHz version that seems to me to be the the Arrendale architecture released 2010 in which case there is absolutely no chance it's going to work since that thing doesn't have AVX instructions as needed by the latest binaries of tensor flow.



Unless your CPU is Sandy Bridge or newer (so AVX instructions)



your options are:



1) get a newer CPU

2) install an older version of tensor flow

3) compile tensor flow from source



for downgrade version see.
Illegal instruction(core dumped) tensorflow
Illegal instruction when import tensorflow in Python






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Comments

Popular posts from this blog

Executable numpy error

PySpark count values by condition

Mass disable jenkins jobs